

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

SUMMER – 19 EXAMINATION

Subject Name: Computer Graphics

Model Answer

Subject Code: 22318

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

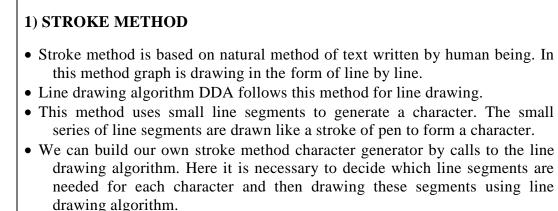
Q .	Sub	Answer	Marking
No.	Q .		Scheme
	N.		
1		Attempt any FIVE of the following	10 M
	a	Define aspect ratio. Give one example of an aspect ratio	2 M
	Ans	Aspect ratio: It is the ratio of the number of vertical points to the number of	Definition-
		horizontal points necessary to produce equal length lines in both directions on the	1M
		screen.	Example-
		or	1M
		In computer graphics, the relative horizontal and vertical sizes. For example, if a	
		graphic has an aspect ratio of 2:1, it means that the width is twice as large as the height.	
		or	
		Aspect ratio is the ratio between width of an image and the height of an image.	
		Example: The term is also used to describe the dimensions of a display resolution.	
		For example, a resolution of 800x600, 1027x768, 1600x1200 has an aspect ratio	
		of 4:3.	
		Resolution 1280x1024 has an aspect ratio 5:4	
		Resolution 2160x1440, 2560x1700 has an aspect ratio 3:2	
	b	List any four applications of computer graphics.	2 M

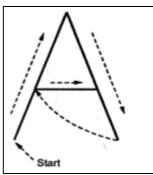
 •	Computer Entertainment (film,	Listing
Ans	video games, advertising etc.)	Listing of
	Medical Applications	four
	CAD/CADD (architecture, mechanical design, electrical design)	applications-
	Cartography	2 M
	Desktop Publishing	
	(DTP) of Education and Training	
	Simulation Graphics	
	(flight,driving) and virtual reality	
	Graphical User Graphics	
	Interface (GUI) Scientific and	
	Internet Engineering Graphics DTP (Desktop Publishing)	
	 Graphical User Interface (GUI) 	
	 Computer-Aided Design 	
	• Computer-Aided Learning (Cal)	
	Animations	
	Computer Art	
	• Entertainment	
	Education and training	
	Image processing	
	Medical Applications	
	Presentation and Business Graphics	
	Simulation and Virtual Reality	
c	Define virtual reality. List any two advantages of virtual reality.	<u>2 M</u>
Ans	Virtual reality (VR) means experiencing things through our computers that don't	Definition-
	really exist. OR	1M Any two
	Virtual Reality (VR) is the use of computer technology to create a simulated	Advantages-
	environment. Instead of viewing a screen in front of them, users are immersed and	1 M
	able to interact with 3D worlds.	
	Advantages:	
	• Virtual reality creates a realistic world	
	• Through Virtual Reality user can experiment with an artificial	
	environment.	
	• Virtual Reality make the education more easily and comfort.	
	• It enables user to explore places.	
	• Virtual Reality has made watching more enjoyable than reading. Virtual reality widely used in video games, engineering, entertainment, education,	
	design, films, media, medicine and many more.	
d		2 M
u	•	
Ans	Line drawing algorithms:	Listing-1 M
d	List any two line drawing algorithms. Also, list two merits of any line drawing algorithm.	2 M

	Bresenham's algorithm	1 M
	 Merits of DDA algorithms: It is the simplest algorithm and it does not require special skills for implementation. It is a faster method for calculating pixel positions than the direct use of equation y = mx + b. It eliminates the multiplication in the equation by making use of raster characteristics, so that appropriate increments are applied in the x or v direction to find the pixel positions along the line path Floating point Addition is still needed. 	1 1/1
	 Merits of Bresenham's Algorithm: Bresenhams algorithm is faster than DDA algorithm Bresenhams algorithm is more efficient and much accurate than DDA algorithm. Bresenham's line algorithm is a highly efficient incremental method over DDA. Bresenhams algorithm can draw circles and curves with much more accuracy than DDA algorithm. It produces mathematically accurate results using only integer addition, subtraction, and multiplication by 2, which can be accomplished by a simple arithmetic shift operation. 	
e	Define convex and concave polygons.	2 M
Ans	Convex Polygon: It is a polygon in which if you take any two positions of polygon then all the points on the line segment joining these two points fall within the polygon itself.	Each 1 M
	Concave Polygon: It is a polygon in which if you take any two positions of polygon then all the points on the line segment joining these two points does not fall entirely within the polygon.	
	polygon then all the points on the line segment joining these two points does not fall entirely within the polygon.	
f Ans	polygon then all the points on the line segment joining these two points does not	2 M Definition-1

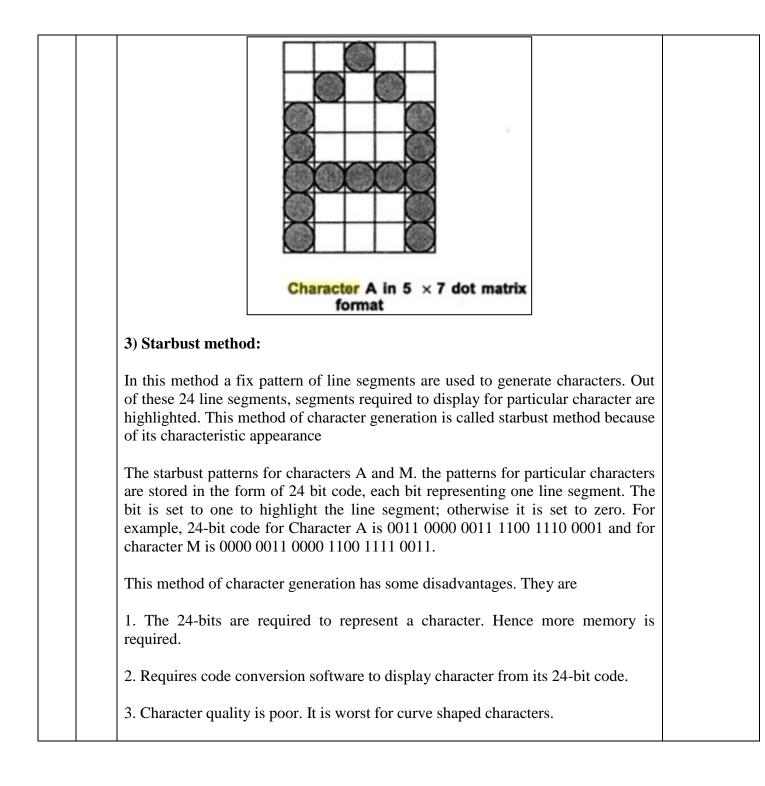
		in which we express affine transformations.	М					
		Normally, book-keeping would become tedious when affine transformations of the						
		\rightarrow	Why required-1					
		form $A\overline{p}$ + t are composed. With homogeneous coordinates, affine	M					
		transformations become matrices, and composition of transformations is as simple						
		as matrix multiplication. $[-]$						
		With homogeneous coordinates, a point \overline{p} is augmented with a 1, to form $\stackrel{\wedge}{p} = \begin{bmatrix} \overline{p} \\ 1 \end{bmatrix}$						
		All points $(\alpha \overline{p}, \alpha)$ represent the same point \overline{p} for real $\alpha \neq 0$.						
	OR We have to use 3×3 transformation matrix instead of 2×2 transformation matrix.							
		To convert a 2×2 matrix to 3×3 matrix, we have to add an extra dummy coordinate						
		W. In this way, we can represent the point by 3 numbers instead of 2 numbers,						
		which is called Homogenous Coordinate system.						
		TT						
		• Homogeneous coordinates are used extensively in computer vision and graphics because they allow common operations such as translation,						
		rotation, scaling and perspective projection to be implemented as matrix						
		operations						
		3D graphics hardware can be specialized to perform matrix multiplications on 4x4						
		matrices.						
	g	Write the transformation matrix for y-shear.	2 M					
	Ans	The Y-Shear can be represented in matrix from as:	For matrix-2					
		[1 0 0]	М					
		$Y_{sh} egin{bmatrix} 1 & 0 & 0 \ shy & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$						
		$X' = X + Sh_X \cdot Y$						
		Y' = Y						
2		Attempt any THREE of the following	12 M					
	a	Compare vector scan display and raster scan display (write any 4 points)	4M					
	Ans	Raster Vector	Any four					
		Raster graphics are composed of Vector graphics are composed	point-4 M					
		pixels. of paths.						
		Raster graphics are resolutionVector graphics are resolution						
		dependent. independent						
		More expensiveLess expensive.GraphicsprimitivesareScan conversion is not required						
		Graphics primitives are Scan conversion is not required specified in terms of their						
		1						
		endpoints and must be scan converted into their						

corresponding points in the frame buffer.It required separate scan conversion hardware.Raster display has ability to display areas filled with solid colors or patterns.It uses interlacingIt uses interlacingIt uses interlacingIt uses interlacingIt open to the product of the product o
ItrequiredseparatescanScan conversion hardware is not required.Rasterdisplay has ability toVector display only draws lines and charactersdisplay areas filled with solid colors or patterns.and charactersIt uses interlacingIt does not used interlacingThisdisplays have lower resolution
conversion hardware.required.Raster display has ability to display areas filled with solid colors or patterns.Vector display only draws lines and charactersIt uses interlacingIt does not used interlacingThis displays have lower resolutionThis displays have higher resolution
display areas filled with solid colors or patterns.and charactersIt uses interlacingIt does not used interlacingThis displays have lower resolutionThis displays have higher resolution
colors or patterns.It uses interlacingIt does not used interlacingThis displays have lowerThis displays have higher resolutionresolutionresolution
It uses interlacingIt does not used interlacingThis displays have lowerThis displays have higherresolutionresolution
This displays have lower This displays have higher resolution
resolution resolution
They occupies more space They occupies less space
which depends on image
quality.
File extensions are:File extensions are:
.bmp, .gif, .jpg, .tif .pdf, .ai, .svg, .eps, .dxf
b Rephrase the Bresenham's algorithm to plot 1/8 th of the circle and write the 4M
b Rephrase the Bresenham's algorithm to plot 1/8 th of the circle and write the 4M algorithm required to plot the same.
Ans The key feature of circle that it is highly symmetric. So, for whole 360 degree of Rephrase
circle we will divide it in 8-parts each octant of 45 degree. In order to that we will M
use Bresenham's Circle Algorithm for calculation of the locations of the pixels in Algorithm
the first octant of 45 degrees. It assumes that the circle is centered on the origin. M
So for every pixel (x, y) it calculates, we draw a pixel in each of the 8 octants of
the circle as shown below:
(-y,x) (y x)
(\mathbf{y},\mathbf{x})
(-x,y). (x,-y)
x-axis
(-x,-y)
(-y,-x) (y,-x)
For a pixel (x,y) all possible pixels in 8 octants.
Algorithm:
Step 1: Read the radius of circle (r).
Step 2: Set decision parameter $d = 3 - 2r$.
Step 3: x=0 and y=r.
Step 4: do
Plot (x,y)
If(d<0) then




	{	
	d = d + 4x + 6	
	}	
	Else	
	{	
	d=d+4(x-y)+10	
	y=y-1	
	}	
	X=x-1	
	}	
	While(x <y)< th=""><th> </th></y)<>	
	Step 5: stop	
	Plotting 8 points, each point in one octant	
	Call Putpixel $(X + h, Y + k)$.	
	Call Putpixel $(-X + h, Y + k)$.	
	Call Putpixel $(X + h, -Y + k)$.	
	Call Putpixel $(-X + h, -Y + k)$.	
	Call Putpixel $(Y + h, X + k)$.	
	Call Putpixel $(-Y + h, X + k)$.	
	Call Putpixel $(Y + h, -X - k)$.	
	Call Putpixel $(-Y + h, -X + k)$.	4M for
c	-	4M for proper
	Call Putpixel (-Y + h,-X + k). Translate the polygon with co-ordinates A (3, 6), B (8, 11), & C (11, 3) by 2 units in X direction and 3 units in Y direction.	
 c Ans	Call Putpixel (-Y + h,-X + k). Translate the polygon with co-ordinates A (3, 6), B (8, 11), & C (11, 3) by 2 units in X direction and 3 units in Y direction. X'=x+tx	proper
	Call Putpixel (-Y + h,-X + k). Translate the polygon with co-ordinates A (3, 6), B (8, 11), & C (11, 3) by 2 units in X direction and 3 units in Y direction. X'=x+tx Y'=y+ty	proper
	Call Putpixel (-Y + h,-X + k). Translate the polygon with co-ordinates A (3, 6), B (8, 11), & C (11, 3) by 2 units in X direction and 3 units in Y direction. X'=x+tx Y'=y+ty tx=2	proper
	Call Putpixel (-Y + h,-X + k). Translate the polygon with co-ordinates A (3, 6), B (8, 11), & C (11, 3) by 2 units in X direction and 3 units in Y direction. X'=x+tx Y'=y+ty	proper
	Call Putpixel $(-Y + h, -X + k)$. Translate the polygon with co-ordinates A (3, 6), B (8, 11), & C (11, 3) by 2 units in X direction and 3 units in Y direction . X'=x+tx Y'=y+ty tx=2 ty=3 for point A(3,6)	proper
	Call Putpixel (-Y + h,-X + k). Translate the polygon with co-ordinates A (3, 6), B (8, 11), & C (11, 3) by 2 units in X direction and 3 units in Y direction. X'=x+tx Y'=y+ty tx=2 ty=3 for point A(3,6) x'=3+2=5	proper
	Call Putpixel $(-Y + h, -X + k)$. Translate the polygon with co-ordinates A (3, 6), B (8, 11), & C (11, 3) by 2 units in X direction and 3 units in Y direction . X'=x+tx Y'=y+ty tx=2 ty=3 for point A(3,6)	proper
	Call Putpixel (-Y + h,-X + k). Translate the polygon with co-ordinates A (3, 6), B (8, 11), & C (11, 3) by 2 units in X direction and 3 units in Y direction. X'=x+tx Y'=y+ty tx=2 ty=3 for point A(3,6) x'=3+2=5 y'=6+3=9	proper
	Call Putpixel (-Y + h,-X + k). Translate the polygon with co-ordinates A (3, 6), B (8, 11), & C (11, 3) by 2 units in X direction and 3 units in Y direction. X'=x+tx Y'=y+ty tx=2 ty=3 for point A(3,6) x'=3+2=5	proper
	Call Putpixel (-Y + h,-X + k). Translate the polygon with co-ordinates A (3, 6), B (8, 11), & C (11, 3) by 2 units in X direction and 3 units in Y direction. X'=x+tx Y'=y+ty tx=2 ty=3 for point A(3,6) x'=3+2=5 y'=6+3=9 for point B(8,11)	proper
	Call Putpixel $(-Y + h, -X + k)$. Translate the polygon with co-ordinates A (3, 6), B (8, 11), & C (11, 3) by 2 units in X direction and 3 units in Y direction. X'=x+tx Y'=y+ty tx=2 ty=3 for point A(3,6) x'=3+2=5 y'=6+3=9 for point B(8,11) x'=8+2=10 y'=11+3=14	proper
	Call Putpixel (-Y + h,-X + k). Translate the polygon with co-ordinates A (3, 6), B (8, 11), & C (11, 3) by 2 units in X direction and 3 units in Y direction. X'=x+tx Y'=y+ty tx=2 ty=3 for point A(3,6) x'=3+2=5 y'=6+3=9 for point B(8,11) x'=8+2=10 y'=11+3=14 for point C(11,3)	proper
	Call Putpixel $(-Y + h, -X + k)$. Translate the polygon with co-ordinates A (3, 6), B (8, 11), & C (11, 3) by 2 units in X direction and 3 units in Y direction. X'=x+tx Y'=y+ty tx=2 ty=3 for point A(3,6) x'=3+2=5 y'=6+3=9 for point B(8,11) x'=8+2=10 y'=11+3=14 for point C(11,3) x'=11+2=13	proper
	Call Putpixel (-Y + h,-X + k). Translate the polygon with co-ordinates A (3, 6), B (8, 11), & C (11, 3) by 2 units in X direction and 3 units in Y direction. X'=x+tx Y'=y+ty tx=2 ty=3 for point A(3,6) x'=3+2=5 y'=6+3=9 for point B(8,11) x'=8+2=10 y'=11+3=14 for point C(11,3)	proper
	Call Putpixel $(-Y + h, -X + k)$. Translate the polygon with co-ordinates A (3, 6), B (8, 11), & C (11, 3) by 2 units in X direction and 3 units in Y direction. X'=x+tx Y'=y+ty tx=2 ty=3 for point A(3,6) x'=3+2=5 y'=6+3=9 for point B(8,11) x'=8+2=10 y'=11+3=14 for point C(11,3) x'=11+2=13	proper

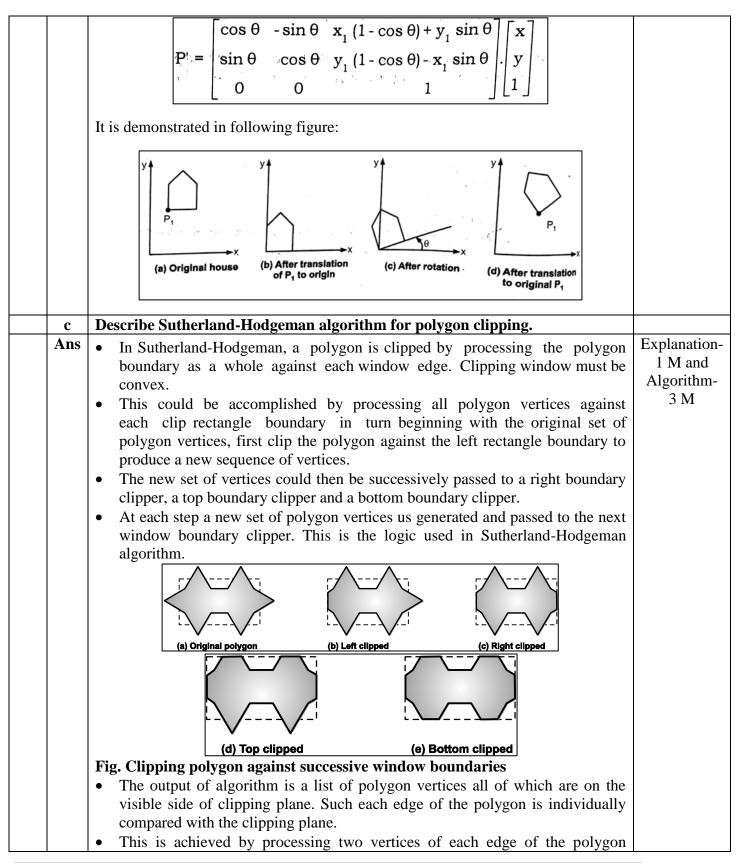
		$B^{2}=(x^{2},y^{2})=(10,14)$ $C^{2}=(x^{2},y^{2})=(13,6)$ $A^{2}(x^{2},y^{2})=(13,6)$	
	4	Write the midneint subdivision algorithm for line aligning	4M
	<u>d</u>	Write the midpoint subdivision algorithm for line clipping.	
	Ans	 Step 1: Scan two end points for the line P₁(x₁, y₁) and P₂(x₂, y₂). Step 2: Scan corners for the window as (ωx₁, ωy₁) and (ωx₂, ωy₂). Step 3: Assign the region codes for endpoints P₁ and P₂ by initializing code with 0000. Bit 1 - if (x < ωx₁) Bit 2 - if (x > ωx₂) Bit 3 - if (y < ωy₂) Bit 4 - if (y > ωy₁) Step 4: Check for visibility of line P₁, P₂. If region codes for both end points are zero then the line is visible, draw it and jump to step 6. If region codes for end points does not zero and the logical Anding operation of them is also not zero then the line is invisible, reject it and jump to step 6. If region codes for end points does not satisfies the condition in 4 (i) and 4 (ii) then line is partly visible. Step5: Find midpoint of line and divide it into two equal line segments and repeat steps 3 through 5 for both subdivided line segments until you get completely visible and completely invisible line segments. Step 6: Exit. 	Algorithm-4 M
3		Attempt any THREE of the following	12 M
	a	State the different character generation methods. Describe any one with diagram.	4 M
	Ans	Character Generator Methods:	Listing-1 M
		1) Stroke Method	and any one method-3 M
		2) Bitmap Method	


2)BITMAP METHOD

3) Starburst Method

- Bitmap method is a called dot-matrix method as the name suggests this method use array of bits for generating a character. These dots are the points for array whose size is fixed.
- In bit matrix method when the dots is stored in the form of array the value 1 in array represent the characters i.e. where the dots appear we represent that position with numerical value 1 and the value where dots are not present is represented by 0 in array.
- It is also called dot matrix because in this method characters are represented by an array of dots in the matrix form. It is a two dimensional array having columns and rows.

A 5x7 array is commonly used to represent characters. However 7x9 and 9x13 arrays are also used. Higher resolution devices such as inkjet printer or laser printer may use character arrays that are over 100x100.



		$\begin{bmatrix} 3 & 4 & 0 \\ 1 & 2 & 1 \\ 1 & 2 & 2 \\ 1 $	
	b	Obtain a transformation matrix for rotating an object about a specified pivot point.	4 M
A A A A A A A A A A A A A A A A A A A	Ans	 To do rotation of an object about any selected arbitrary point P1(x1,y1), following sequence of operations shall be performed. 1. Translate: Translate an object so that arbitrary point P1 is moved to coordinate origin. 	Proper Explanation 4 M
		2. Rotate: Rotate object about origin.	
		3. Translate: Translate object so that arbitrary point P1 is moved back to the its original position.	
		Note: Here to do one operation we are doing the sequence of three operations. So it is called as composite transformation or concatenation.	
		Rotate about point P1(x1,y1).	
		1) Translate P1 to origin.	
		2) Rotate	
		3) Translate back to P1.	
		Equation for this composite transformation matrix form is as follows:	
		$P' = T (x_1, y_1) \cdot R (\theta) \cdot T (-x_1, -y_1)$ $P' = \begin{bmatrix} 1 & 0 & x_1 \\ 0 & 1 & y_1 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -x_1 \\ 0 & 1 & -y_1 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$	
		Here $(x1,y1)$ are coordinates of point P1 and hence are translation factors tx and ty; we want to move P1 to origin, x1 and y1 are x and y distances to P1and hence it is translation factor.	

d	Given the vertices of Bezier Polygon as P ₀ (1, 1), P ₁ (2,3), P ₂ (4,3), P ₃ (3,1), determine five points on Bezier Curve.	4 M
	Step 7: Stop.	
	Step 6: Repeat the steps 4 and 5 for remaining edges of clipping window. Each time resultant list of vertices is successively passed to process next edge of clipping window.	
	Step 5: Save the resulting intersections and vertices in the new list of vertices according to four possible relationships between the edge and the clipping boundary.	
	Step 4: Compare vertices of each of polygon, individually with the clipping plane.	
	Step 3: Consider the left edge of window.	
	Step 2: Read co-ordinates of the clipping window.	
	Step 1: Read co-ordinates of all vertices of the polygon.	
	(ii) $I_Y = y_{min}$ Algorithm for Sutherland-Hodgeman Polygon Clipping:	
	(i) $I_X = x_1 + (y_{min} - y_1) / \text{slope}$	
	4. Finally, the intersection of the edge with the bottom side of the window is:	
	(i) $I_X = x_1 + (y_{max} - y_1) / slope$ (ii) $I_Y = y_{max}$	
	3. The intersection of the polygon's edge with the top side of the window is:	
	(i) $I_X = x_{max}$ (ii) $I_Y = slope^*(x_{max} - x_1) + y_1$, where the slope = $(y_2 - y_1)/(x_2 - x_1)$	
	window is:	
	(ii) $I_Y = slope^*(x_{min} - x_1) + y_1$, where the slope $= (y_2 - y_1)/(x_2 - x_1)$. 2. The location of the intersection of the edge with the right side of the	
	(i) $I_X = x_{min}$	
	 The location (I_X, I_Y) of the intersection of the edge with the left side of the window is: 	
	• Assume that we're clipping a polygon's edge with vertices at (x_1, y_1) and (x_2, y_2) against a clip window with vertices at (x_{min}, y_{min}) and (x_{max}, y_{max}) .	

Ans	Ans :-	Proper resu 4 M
	The equation for the Bezier Curve is given as:	
	$P(u) = (1-u)^{3}P_{1} + 3u(1-u)^{2}P_{2} + 3u^{2}(1-u)P_{3} + u^{3}P_{4}$	
	for 05u51	
	where,	
	P(u) is the point on the curve P., P2, P3, P4	
	Let us take,	
	$u=0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}$	
	$P(0) = P_1 = (1, 1)$	
	$: P\left(\frac{1}{4}\right) = \left(1 - \frac{1}{4}\right)^{3} P_{1} + 3 \frac{1}{4} \left(1 - \frac{1}{4}\right)^{2} P_{2} + 3 \left(\frac{1}{4}\right)^{2} \left(1 - \frac{1}{4}\right) P_{3} + \left(\frac{1}{4}\right)^{3} P_{4}$	
	$=\frac{27}{64}(1,1)+\frac{27}{64}(2,3)+\frac{9}{64}(4,3)+\frac{1}{64}(3,1)$	
	$= \left[\frac{27}{64} \times 1 + \frac{27}{64} \times 2 + \frac{9}{64} \times 4 + \frac{1}{64} \times 3\right],$	
	$\frac{27}{64} \times 1 + \frac{27}{64} \times 3 + \frac{9}{64} \times 3 + \frac{1}{64} \times 1$	
	$= \left[\frac{27}{64} + \frac{54}{64} + \frac{36}{64} + \frac{3}{64}, \frac{27}{64} + \frac{81}{64} + \frac{27}{64} + \frac{1}{64}\right]$	
	$= \begin{bmatrix} 12.0 & 136 \\ 64 & 64 \end{bmatrix}$	
	=(1.875, 2.125)	

 $= P\left(\frac{1}{2}\right) = \left(1 - \frac{1}{2}\right)^{3}P_{1} + 3\frac{1}{2}\left(1 - \frac{1}{2}\right)^{2}P_{2} + 3\left(\frac{1}{2}\right)^{2}\left(1 - \frac{1}{2}\right)P_{3} + \left(\frac{1}{2}\right)^{3}P_{4}$ $= \frac{1}{8}(1,1) + \frac{3}{8}(2,3) + \frac{3}{8}(4,3) + \frac{1}{8}(3,1)$ $= \left[\frac{1}{8} \times 1 + \frac{3}{8} \times 2 + \frac{3}{8} \times 4 + \frac{1}{8} \times 3 \right],$ $\frac{1}{8} \times 1 + \frac{3}{8} \times 3 + \frac{3}{8} \times 3 + \frac{3}{8} \times 3 + \frac{1}{8} \times 1$ $= \left[\frac{1}{8} + \frac{6}{8} + \frac{12}{8} + \frac{3}{8} , \frac{1}{8} + \frac{9}{8} + \frac{9}{8} + \frac{1}{8} \right]$ $=\left[\frac{22}{8}, \frac{20}{8}\right]$ = (2.75,2.5) $P\left(\frac{3}{4}\right) = \left(1 - \frac{3}{4}\right)^{3} P_{1} + 3\frac{3}{4}\left(1 - \frac{3}{4}\right) P_{2} + 3\left(\frac{3}{4}\right)^{2}\left(1 - \frac{3}{4}\right) P_{3} + \left(\frac{3}{4}\right)^{3} P_{4}$ $=\frac{1}{64}P_1+\frac{9}{64}P_2+\frac{27}{64}P_3+\frac{27}{64}P_4$ $= \frac{1}{64}(1,1) + \frac{9}{64}(2,3) + \frac{27}{64}(4,3) + \frac{27}{64}(3,1)$ $= \left[\frac{1}{64} \times 1 + \frac{9}{64} \times 2 + \frac{27}{64} \times 4 + \frac{27}{64} \times 3 \right],$ $\frac{1}{64} \times 1 + \frac{9}{64} \times 3 + \frac{27}{64} \times 3 + \frac{27}{64} \times 1$ $= \left[\frac{1}{64} + \frac{18}{64} + \frac{108}{64} + \frac{81}{64} \right], \frac{1}{64} + \frac{27}{64} + \frac{81}{64} + \frac{27}{64} \right]$ $=\left[\frac{208}{64},\frac{136}{64}\right]=(3.25,2.125)$ $P(1) = P_3 = (3, 1)$

4		Attempt any THREE of the following					
<u> </u>	a	Describe the vector scan display techniques with neat diagram.					
	Ans	 A pen plotter operates in a similar way and is an example of a random-scan, hard-copy device. When operated as a random-scan display unit, a CRT has the electron beam directed only to the parts of the screen where a picture is to be drawn. Random scan monitors draw a picture one line at a time and for this reason are also referred to as vector displays (or stroke-writing or calligraphic displays). 	Explanation 3 M Diagram 1 M				
		A B					
		 Here the electron gun of a CRT illuminate's points and / or straight lines in any order. If we want a line connecting point A with point B on vector graphics display, we simply drive the beam reflection circuitry, which will cause beam to go directly from point A to point B. Refresh rate on a random-scan system depends on the number of lines to be displayed. Picture definition stored as a set of line drawing commands in an area of memory called "<i>refresh display file</i>" or also called as <i>display list</i> or <i>display program</i> or <i>refresh buffer</i>. 					
		 To display a given picture, the system cycles through the set of commands in the display file, drawing each component line by line in turn. After all line drawing commands have been processed, the system cycles back to the first line drawing command in the list. And repeats the procedure of scan, display and retrace. This displays to draw all the component lines of picture 30 to 60 					
		 frames/second Random scan system is designed for line drawing applications; hence cannot display realistic shaded scenes. Vector displays produces smooth line drawings but raster produces jagged lines that are plotted points 					
		 Random scan suitable for applications like engineering and scientific drawings Graphics patterns are displayed by directing the electron beam along the component lines of the picture 					
		• A scene is then drawn one line at a time by positioning the beam to fill in the line between specified end points.					

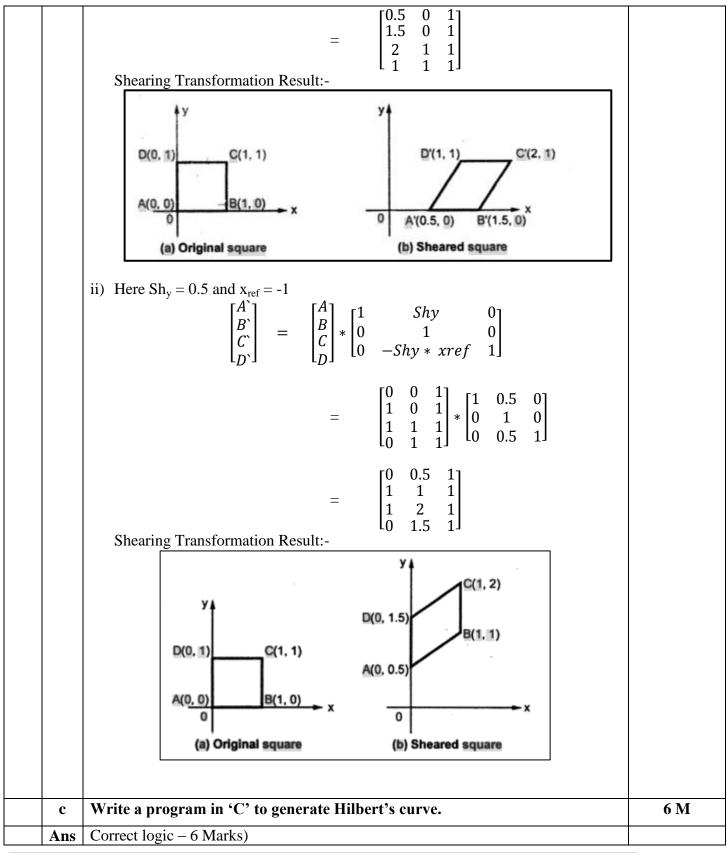
b	Consider the line f rasterize this line.	from (0,0) to (4,6). U	lse the simj	ple DDA al	gorithm to	4 M
Ans	Evaluating steps 1	to 5 in the	DDA algor	rithm we ha	ive,		Proper result
	Х	$f_1 = 0, Y_1 =$	= 0				4 M
	Х	$f_2 = 4, Y_2$	= 6				
	Length = Y	$ Y_2 - Y_1 =$	б				
	$\Delta X = X_2 - X_1 / \text{Length} = 4/6$						
	$\Delta \mathbf{Y} = \mathbf{Y}_2 - \mathbf{Y}_2 $	$-\mathbf{Y}_{l} $ / Len	gth = $6/6$	$\delta = 1$			
	Initial value for,						
	$X=0+0.5 \times (4/6)$	5) = 0.5					
	$Y = 0 + 0.5 \times (1)$	0 = 0.5					
	Plot integer now:						
	1. Plot (0,0), x= 2.Plot (1,1), x=x 3.Plot (1,2), x=x 4.Plot (2,3), x=x 5.Plot (3,4), x=x 6.Plot (3,5), x=x Tabulating the resu	$+\Delta X=1.1$ + $\Delta X=1.8$ + $\Delta X=2.5$ + $\Delta X=3.1$ + $\Delta X=3.8$	67+4/6=1.8 33+4/6=2.5 +4/6=3.167 67+4/6=3.8 33+4/6=4.5	y=y+2 333 $y=y+2$ 333 $y=y+2$	$y=y+ \Delta Y=$ $y=y+ \Delta Y=$ $\Delta Y=4.5+1=$ $y=y+ \Delta Y=$	2.5 2.5+1=3.5 3.5+1=4.5 5.5	
		i	Plot	X	у		
				0.5	0.5		
		-					
		1	(0,0)	1.167	1.5		
		2	(1,1)	1.833	2.5	-	
		2 3	(1,1) (1,2)	1.833 2.5	2.5 3.5		
		2	(1,1)	1.833	2.5		

	• The results are plotted as shown in the Fig. 2.2. It shows that the rasterized line lies to both sides of the actual line, i.e. the algorithm is orientation dependent.	
c	Consider a square A(1,0), B(0,0), C(0,1), D(1,1). Rotate the square by 45 ⁰ anti-clockwise direction followed by reflection about X-axis.	4 M
Ans	Given, A(1,0) B(0,0) C(0,1) D(1,1) R = $\begin{bmatrix} \cos \theta & \sin \theta & 0 \\ \sin \theta & \cos \theta & 1 \end{bmatrix}$ Here, $\theta = 45^{\circ}$ R = $\begin{bmatrix} \cos 45 & \sin 45 & 0 \\ \sin 45 & \cos 45 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ - $\begin{bmatrix} 1/7_{2} & 1/3_{2} & 0 \\ -1/7_{2} & 1/3_{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Matrix Reflection about 2-0xis:- $\alpha_{ret} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	Rotation + Reflection Matrix 1 M final Result= 3 M

	First we rotate square by 45° anticlectwise direction and followed by reflection about reaxis. $R \cdot ref = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0\\ -1/\sqrt{2} & 1/\sqrt{2} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{bmatrix}$	
	$= \begin{pmatrix} 1 \sqrt{2} & -1/\sqrt{2} & 0\\ -1 \sqrt{2} & -1 \sqrt{2} & 0\\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	
	$\begin{bmatrix} D \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{1}\sqrt{2} & -\frac{1}{\sqrt{2}} & 1 \\ 0 & 0 & 1 \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 1 \end{bmatrix}$ $A' = \begin{pmatrix} 1\sqrt{2} & , -\frac{1}{\sqrt{2}} \end{pmatrix}$	
d	$B^{1} = (0, 0)$ $C^{2} = (-1/\sqrt{2}, -1/\sqrt{2})$ $D^{1} = (0, -2/\sqrt{2})$ Use Cohen-Sutherland outcode algorithm to clip line PI (40, 15) P2 (75.	4 M
	45) against a window A (50, 10), B (80, 10). C(80, 40) & D(50,40).	
Ans	P1 (40, 15) - P2 (75, 45) $Wxi = 50 Wy2 = 40 Wx2 = 80 Wy2 = 10$ Point Endcode ANDing	Proper result 4 M
	P1 0001 0000 (Partially visible)	
	P2 0000	
	$y_1 = m(x_L - x_1) + y_2 = \frac{6}{7}(50-40) + 15$ $m = \frac{45-15}{75-40}$	

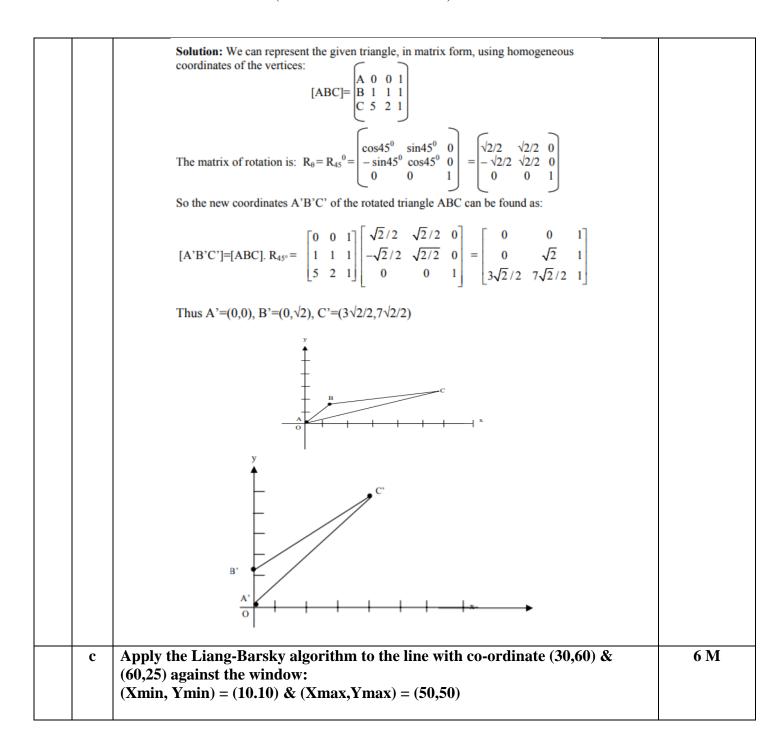
	= 23.57	
	$x_1 = \frac{1}{m} (y_T - y) + x = \frac{7}{6} (40-50) + 40 = 69.16$	
	$y_2 = m(x_R - x) + y = \frac{6}{7}(80-40) + 15 = 49.28$	
	$x_2 = \frac{1}{m}(y_B - y) + x = \frac{7}{6}(10-15)+40 = 34.16$	
	Hence:	
	$P_{1}(40, 15)$ (50, 40) (80, 40) (80, 40) (80, 10) (80, 10)	
e	What is interpolation? Describe the Lagrangian Interpolation method.	4 M
Ans	Specify a spline curve by giving a set of coordinate positions, called control	Definition-
	points, which indicates the general shape of the curve These, control points are then fitted with piecewise continuous parametric polynomial functions in	1 M Description
	one of two ways. When polynomial sections are fitted so that the curve passes	of
	through each control point, the resulting curve is said to interpolate the set of	Lagrangian
	control points. On the other hand, when the polynomials are fitted to the	method- 3
	general control-point path without necessarily passing through any control	Μ
	point, the resulting curve is said to approximate the set of control points	
	interpolation curves are commonly used to digitize drawings or to specify	
	animation paths. Approximation curves are primarily used as design tools to structure object surfaces an approximation spline surface credited for a	
	design application. Straight lines connect the control-point positions above the	
	surface	
	Interpolation using univariate spline	
	-1 - Interpolation using RBF 2 multiquadrics	
	Dago 20 2 (•

		Lagrangian Interpolation Method:					
		Suppose we want a polynomial curve that will pass through n sample					
		 points - x₁, y₁, z₁), (x₂, y₂, z₂),, (x_n, y_n, z_n), the function can be constructed as the sum of terms, one term for each sample point. a. Blending Function : 					
		$fx(u) = \sum_{i=1}^{n} x_i B_i(u)$					
		$fx (u) = \sum_{i=1}^{n} x_i B_i(u)$ $fy (u) = \sum_{i=1}^{n} y_i B_i(u)$					
		$fz(u) = \sum_{i=1}^{n} z_i B_i(u)$					
		The function $B_i(u)$ is called as a blending function. For each value of u, the blending function determines which i th sample point affects the position of the curve.					
		The function $B_i(u)$ tells how hard the i th sample point is pulling it for some value of u, $B_i(u) = 1$ and for each $j \neq i$, $B_j(u) = 0$, then i th sample point has complete control of the curve. The curve will pass through i th sample point. Create a blending function for which the sample points (x_1, y_1, z_1) has complete control when $u = -1$, the third when $u = 1$ and so on. Therefore, we require a blending function.					
		$B_1(u) = 1 \text{ at } u = -1$ and $B_1(u) = 0 \text{ at } u = 0, 1, 2, 3,, n-2$					
		An expression is 0 at $u(u - 1)(u - 2)[u - (n - 2)]$					
		At $u = -1$, it is $(-1)(-2)(-3)(1-n)$ So dividing by above constant, it gives 1 at $u = -1$					
		Therefore					
		$B_1(u) = \frac{u(u-1)(u-2)[(u-(n-2)]}{(-1)(-2)(-3)(1-n)}$					
		(-1)(-2)(-3)(1 - n) The i th blending function can be constructed in the same way to be 1 at u = i					
		-2 and 0 at other integers. (u+1)(u)(u-1)[u-(i-3)][u-(i-1)][u-(i-2)]					
		$\therefore B_{1}(u) = \frac{(u+1)(u)(u-1)[u-(i-3)][u-(i-1)][u-(i-2)]}{(i-1)(i-2)(i-3)(1)(-1)(i-n)}$					
		The curve which is approximated using above equation is called Lagrange Interpolation.					
5		Attempt any TWO of the following :	12 M				
	a	Consider the line from (5,5) to (13,9). Use the Bresenham's algorithm to rasterize the line.	6 M				
	Ans	Bresenham Line Drawing Calculator By putting x1,x2 and y1,y2 Value it Show	Remark: Preliminary				
		The Result In Step By Step order, and Result Brief Calculation Which Is					
		Calculated by Bresenham Line Drawing Algorithm. Bresenham Line Drawing Algorithm display result in tables. Starting Points is x1,y1 and Ending points is	Calculations 2 M; Step				
		x2,y2.	wise plot 4				
		Preliminary Calculations:	M				
		x1 = 5 y1 = 5 & x2 = 13 y2 = 9					
		Calculation Result					



Т			0	1 (5 1)	•	
	dx = abs x2)	s(x1 -	8 =	abs(5 - 13	3)	
	dy = abs(y1 - y2)		4 = abs(5 - 9)			
	p = 2 * (dy - dx)		-8 = 2 * (4 - 8)			
	ELSE		$\begin{array}{l} x=x1 \mid y=y1 \mid end = \\ x2 \end{array}$			
			x =	x = 5 y = 5 end = 13		
	<u>Stepwise</u>	Plot:				
	STEP	while(x < end)	x = x + 1	if(p < 0) { p = p + 2 * dy } else{ p = p + 2 * (dy - dx) }	OUTPUT	
	1	6 < 13	6 = 5 + 1	IF 0 = -8 + 2 * 4	x = 6 y = 5	
	2	7 < 13	7 = 6 + 1	ELSE -8 = 0 + 2 * (4 - 8)	$\begin{array}{l} x=7 \mid y=\\ 6 \end{array}$	
	3	8 < 13	8 7 + 1	IF 0 = -8 + 2 * 4	x = 8 y = 6	
	4	9 < 13	9 = 8 +	ELSE -8 = 0 + 2 * (4 -	$\begin{array}{l} x=9 \mid y=\\ 7 \end{array}$	

			1	8)			
	5	10 < 13	10 = 9 + 1		$\begin{array}{l} x = 10 \mid y \\ = 7 \end{array}$		
	6	11 < 13	11 = 10 + 1	ELSE -8 = 0 + 2 * (4 - 8)	x = 11 y = 8		
	7	12 < 13	12 = 11 + 1	_	x = 12 y = 8		
	8	13 < 13	13 = 12 + 1	ELSE -8 = 0 + 2 * (4 - 8)	x = 13 y = 9		
b	D(0,1) as (i) Shear	given belo Parameter	ow. r valu	e of 0.5	relative to the	with A(0,0), B(1,0), C(1,1), e line yref = -1. e line xref = -1.	6 M
Ans	We can represent the given square ABCD, in matrix form, using homogeneous coordinates of vertices as: $ \begin{bmatrix} A & 0 & 0 & 1 \\ B & 1 & 0 & 1 \\ C & 1 & 1 & 1 \\ D & 0 & 1 & 1 \end{bmatrix} $ i) Here Sh _x = 0.5 and y _{ref} = -1 $ \begin{bmatrix} A^{'} \\ B^{'} \\ C^{'} \\ D^{'} \end{bmatrix} = \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix} * \begin{bmatrix} 1 & 0 & 0 \\ Shx & 1 & 0 \\ -Shx * yref & 0 & 1 \end{bmatrix} $						
			$\begin{bmatrix} C \\ D \end{bmatrix}$	-		$ \begin{bmatrix} 1 & 0 \\ * & yref & 0 & 1 \end{bmatrix} $ $ \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ 0.5 & 0 & 1 \end{bmatrix} $	
					$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0.5 & 0 & 1 \end{bmatrix}$	




```
#include <stdio.h>
#include <stdlib.h>
#include <graphics.h>
#include <math.h>
void move(int j,int h,int &x,int &y)
{
    if(j==1)
     y-=h;
    else if(j==2)
     x + = h;
    else if(j==3)
     y + = h;
    else if(j==4)
     x-=h;
    lineto(x,y);
}
void hilbert(int r,int d,int l,int u,int i,int h,int &x,int &y)
{
    if(i>0)
     {
         i--:
         hilbert(d,r,u,l,i,h,x,y);
         move(r,h,x,y);
         hilbert(r,d,l,u,i,h,x,y);
         move(d,h,x,y);
         hilbert(r,d,l,u,i,h,x,y);
         move(l,h,x,y);
         hilbert(u,l,d,r,i,h,x,y);
     }
}
int main()
{
    int n,x1,y1;
    int x0=50,y0=150,x,y,h=10,r=2,d=3,l=4,u=1;
     printf)"\nGive the value of n: ");
    scanf("%d",&n);
     x=x0;y=y0;
     int gm,gd=DETECT;
     initgraph(&gd,&gm,NULL);
     moveto(x,y);
     hilbert(r,d,l,u,n,h,x,y);
```


		<pre>delay(10000); closegraph(); return 0; }</pre>	
6	'	Attempt any TWO of the following	12 M
	a	Write a Program in 'C' for DDA Circle drawing algorithm	6 M
	Ans	<pre>#include<stdio.h> #include<conio.h> #include<conio.h> #include<graphics.h> #include<math.h> void main() { int gdriver=DETECT,gmode,errorcode,tmp,i=1,rds; float st_x,st_y,x1,x2,y1,y2,ep; initgraph(&gdriver,&gmode,"C:\\TC\\BGI"); printf("Enter Radius:"); scanf("%d",&rds); while(rds>pow(2,i)) i++; ep=1/pow(2,i); x1=rds; y1=0; st_x=rds; st_y=0; do { x2=x1+(y1*ep); y2=y1-(x2*ep); putpixel(x2+200,y2+200,10); x1=x2; y1=y2; }while((y1-st_y)<ep (st_x-x1)="" ="">ep); getch(); </ep></math.h></graphics.h></conio.h></conio.h></stdio.h></pre>	Correct Program 6 marks
	b	} Perform a 45° rotation of triangle A(0,0), B(1,1), C(5,2) (i) About the origin (ii) About P(-1,-1)	6 M
	Ans	About the Origin: -	Each Sub problem – 3 M

Ans	Given:	Remark:
	$(X_{min}, Y_{min}) = (10, 10) \text{ and } (X_{max}, Y_{max}) = (50, 50)$ P1 (30, 60) and P2 = (60, 25)	Calculation of each side 1 M;
	Solution:	Decision of
	Set $Umin = 0$ and $Umax = 1$	displaying line
	ULeft= q1 / p1 = $X1 - Xmin / - \Delta X$	coordinates with
	= 30 - 10 / - (60 - 30)	justification 2 M
	= 20 / - 30	
	= -0.67	
	URight= q2 / p2 = Xmax - X1/ ΔX	
	= 50 - 30 / (60 - 30)	
	= 20 / 30	
	= 0.67	
	UBottom= $q3 / p3$ = $Y1 - Ymin / - \Delta Y$	
	= 60 - 10 / - (25 - 60)	
	= 50 / 35	
	= 1.43	
	UTop=q4 / p4 = Ymax - Y1 / Δ Y	
	= 50 - 60 / (25 - 60)	
	= -10 / - 35	
	= 0.29	
	Since ULeft= -0.57 which is less than Umin. Therefore we ignore it. Similarly UBottom=1.43 which is greater than Umax. So we ignore it. URight=Umin = 0.67 (Entering) UTop=Umax = 0.29 (Exiting) We have UTop= 0.29 and URight= 0.67 $Q - P = (\Delta X, \Delta Y) = (30, -35)$	
	Since Umin>Umax, there is no line segment to draw.	